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Abstract—Natural phenomena show that many creatures form large social groups and move in regular patterns. However, previous

works focus on finding the movement patterns of each single object or all objects. In this paper, we first propose an efficient distributed

mining algorithm to jointly identify a group of moving objects and discover their movement patterns in wireless sensor networks.

Afterward, we propose a compression algorithm, called 2P2D, which exploits the obtained group movement patterns to reduce the

amount of delivered data. The compression algorithm includes a sequence merge and an entropy reduction phases. In the sequence

merge phase, we propose a Merge algorithm to merge and compress the location data of a group of moving objects. In the entropy

reduction phase, we formulate a Hit Item Replacement (HIR) problem and propose a Replace algorithm that obtains the optimal

solution. Moreover, we devise three replacement rules and derive the maximum compression ratio. The experimental results show that

the proposed compression algorithm leverages the group movement patterns to reduce the amount of delivered data effectively and

efficiently.

Index Terms—Data compression, distributed clustering, object tracking.

Ç

1 INTRODUCTION

RECENT advances in location-acquisition technologies,
such as global positioning systems (GPSs) and wireless

sensor networks (WSNs), have fostered many novel
applications like object tracking, environmental monitoring,
and location-dependent service. These applications gener-
ate a large amount of location data, and thus, lead to
transmission and storage challenges, especially in resource-
constrained environments like WSNs. To reduce the data
volume, various algorithms have been proposed for data
compression and data aggregation [1], [2], [3], [4], [5], [6].
However, the above works do not address application-level
semantics, such as the group relationships and movement
patterns, in the location data.

In object tracking applications, many natural phenomena
show that objects often exhibit some degree of regularity in
their movements. For example, the famous annual wild-
ebeest migration demonstrates that the movements of
creatures are temporally and spatially correlated. Biologists
also have found that many creatures, such as elephants,

zebra, whales, and birds, form large social groups when
migrating to find food, or for breeding or wintering. These
characteristics indicate that the trajectory data of multiple
objects may be correlated for biological applications. More-
over, some research domains, such as the study of animals’
social behavior and wildlife migration [7], [8], are more
concerned with the movement patterns of groups of
animals, not individuals; hence, tracking each object is
unnecessary in this case. This raises a new challenge of
finding moving animals belonging to the same group and
identifying their aggregated group movement patterns.
Therefore, under the assumption that objects with similar
movement patterns are regarded as a group, we define the
moving object clustering problem as given the movement
trajectories of objects, partitioning the objects into non-
overlapped groups such that the number of groups is
minimized. Then, group movement pattern discovery is to
find the most representative movement patterns regarding
each group of objects, which are further utilized to
compress location data.

Discovering the group movement patterns is more
difficult than finding the patterns of a single object or all
objects, because we need to jointly identify a group of objects
and discover their aggregated group movement patterns.
The constrained resource of WSNs should also be consid-
ered in approaching the moving object clustering problem.
However, few of existing approaches consider these issues
simultaneously. On the one hand, the temporal-and-spatial
correlations in the movements of moving objects are
modeled as sequential patterns in data mining to discover
the frequent movement patterns [9], [10], [11], [12]. How-
ever, sequential patterns 1) consider the characteristics of all
objects, 2) lack information about a frequent pattern’s
significance regarding individual trajectories, and 3) carry
no time information between consecutive items, which make
them unsuitable for location prediction and similarity
comparison. On the other hand, previous works, such as
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[13], [14], [15], measure the similarity among these entire
trajectory sequences to group moving objects. Since objects
may be close together in some types of terrain, such as
gorges, and widely distributed in less rugged areas, their
group relationships are distinct in some areas and vague in
others. Thus, approaches that perform clustering among
entire trajectories may not be able to identify the local group
relationships. In addition, most of the above works are
centralized algorithms [9], [10], [11], [12], [13], [14], [15],
which need to collect all data to a server before processing.
Thus, unnecessary and redundant data may be delivered,
leading to much more power consumption because data
transmission needs more power than data processing in
WSNs [5]. In [16], we have proposed a clustering algorithm
to find the group relationships for query and data aggrega-
tion efficiency. The differences of [16] and this work are as
follows: First, since the clustering algorithm itself is a
centralized algorithm, in this work, we further consider
systematically combining multiple local clustering results
into a consensus to improve the clustering quality and for
use in the update-based tracking network. Second, when a
delay is tolerant in the tracking application, a new data
management approach is required to offer transmission
efficiency, which also motivates this study. We thus define
the problem of compressing the location data of a group of
moving objects as the group data compression problem.

Therefore, in this paper, we first introduce our distrib-
uted mining algorithm to approach the moving object
clustering problem and discover group movement patterns.
Then, based on the discovered group movement patterns,
we propose a novel compression algorithm to tackle the
group data compression problem. Our distributed mining
algorithm comprises a Group Movement Pattern Mining
(GMPMine) and a Cluster Ensembling (CE) algorithms. It
avoids transmitting unnecessary and redundant data by
transmitting only the local grouping results to a base station
(the sink), instead of all of the moving objects’ location data.
Specifically, the GMPMine algorithm discovers the local
group movement patterns by using a novel similarity
measure, while the CE algorithm combines the local
grouping results to remove inconsistency and improve the
grouping quality by using the information theory.

Different from previous compression techniques that
remove redundancy of data according to the regularity
within the data, we devise a novel two-phase and
2D algorithm, called 2P2D, which utilizes the discovered
group movement patterns shared by the transmitting node
and the receiving node to compress data. In addition to
remove redundancy of data according to the correlations
within the data of each single object, the 2P2D algorithm
further leverages the correlations of multiple objects and
their movement patterns to enhance the compressibility.
Specifically, the 2P2D algorithm comprises a sequence
merge and an entropy reduction phases. In the sequence
merge phase, we propose a Merge algorithm to merge and
compress the location data of a group of objects. In the
entropy reduction phase, we formulate a Hit Item Replace-
ment (HIR) problem to minimize the entropy of the merged
data and propose a Replace algorithm to obtain the optimal
solution. The Replace algorithm finds the optimal solution

of the HIR problem based on Shannon’s theorem [17] and
guarantees the reduction of entropy, which is convention-
ally viewed as an optimization bound of compression
performance. As a result, our approach reduces the amount
of delivered data and, by extension, the energy consumption
in WSNs.

Our contributions are threefold:

. Different from previous works, we formulate a
moving object clustering problem that jointly iden-
tifies a group of objects and discovers their move-
ment patterns. The application-level semantics are
useful for various applications, such as data storage
and transmission, task scheduling, and network
construction.

. To approach the moving object clustering problem,
we propose an efficient distributed mining algo-
rithm to minimize the number of groups such that
members in each of the discovered groups are highly
related by their movement patterns.

. We propose a novel compression algorithm to
compress the location data of a group of moving
objects with or without loss of information. We
formulate the HIR problem to minimize the entropy
of location data and explore the Shannon’s theorem
to solve the HIR problem. We also prove that the
proposed compression algorithm obtains the opti-
mal solution of the HIR problem efficiently.

The remainder of the paper is organized as follows: In
Section 2, we review related works. In Section 3, we provide
an overview of the network, location, and movement
models and formulate our problem. In Section 4, we
describe the distributed mining algorithm. In Section 5,
we formulate the compression problems and propose our
compression algorithm. Section 6 details our experimental
results. Finally, we summarize our conclusions in Section 7.

2 RELATED WORK

2.1 Movement Pattern Mining

Agrawal and Srikant [18] first defined the sequential
pattern mining problem and proposed an Apriori-like
algorithm to find the frequent sequential patterns. Han et
al. consider the pattern projection method in mining
sequential patterns and proposed FreeSpan [19], which is
an FP-growth-based algorithm. Yang and Hu [9] developed
a new match measure for imprecise trajectory data and
proposed TrajPattern to mine sequential patterns. Many
variations derived from sequential patterns are used in
various applications, e.g., Chen et al. [20] discover path
traversal patterns in a Web environment, while Peng and
Chen [21] mine user moving patterns incrementally in a
mobile computing system. However, sequential patterns
and its variations like [20], [21] do not provide sufficient
information for location prediction or clustering. First, they
carry no time information between consecutive items, so
they cannot provide accurate information for location
prediction when time is concerned. Second, they consider
the characteristics of all objects, which make the meaningful
movement characteristics of individual objects or a group of
moving objects inconspicuous and ignored. Third, because
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a sequential pattern lacks information about its significance
regarding to each individual trajectory, they are not fully
representative to individual trajectories. To discover sig-
nificant patterns for location prediction, Morzy mines
frequent trajectories whose consecutive items are also
adjacent in the original trajectory data [10], [22]. Meanwhile,
Giannotti et al. [11] extract T-patterns from spatiotemporal
data sets to provide concise descriptions of frequent
movements, and Tseng and Lin [12] proposed the TMP-
Mine algorithm for discovering the temporal movement
patterns. However, the above Apriori-like or FP-growth-
based algorithms still focus on discovering frequent
patterns of all objects and may suffer from computing
efficiency or memory problems, which make them unsui-
table for use in resource-constrained environments.

2.2 Clustering

Recently, clustering based on objects’ movement behavior
has attracted more attention. Wang et al. [14] transform the
location sequences into a transaction-like data on users and
based on which to obtain a valid group, but the proposed
AGP and VG growth are still Apriori-like or FP-growth-
based algorithms that suffer from high computing cost and
memory demand. Nanni and Pedreschi [15] proposed a
density-based clustering algorithm, which makes use of an
optimal time interval and the average euclidean distance
between each point of two trajectories, to approach the
trajectory clustering problem. However, the above works
discover global group relationships based on the proportion
of the time a group of users stay close together to the whole
time duration or the average euclidean distance of the entire
trajectories. Thus, they may not be able to reveal the local
group relationships, which are required for many applica-
tions. In addition, though computing the average euclidean
distance of two geometric trajectories is simple and useful,
the geometric coordinates are expensive and not always
available. Approaches, such as EDR, LCSS, and DTW, are
widely used to compute the similarity of symbolic trajectory
sequences [13], but the above dynamic programming
approaches suffer from scalability problem [23]. To provide
scalability, approximation or summarization techniques are
used to represent original data. Guralnik and Karypis [23]
project each sequence into a vector space of sequential
patterns and use a vector-based K-means algorithm to cluster
objects. However, the importance of a sequential pattern
regarding individual sequences can be very different, which
is not considered in this work. To cluster sequences, Yang
and Wang proposed CLUSEQ [24], which iteratively identi-
fies a sequence to a learned model, yet the generated clusters
may overlap which differentiates their problem from ours.

2.3 Data Compression

Data compression can reduce the storage and energy
consumption for resource-constrained applications. In [1],
distributed source (Slepian-Wolf) coding uses joint entropy
to encode two nodes’ data individually without sharing any
data between them; however, it requires prior knowledge of
cross correlations of sources. Other works, such as [2], [4],
combine data compression with routing by exploiting cross
correlations between sensor nodes to reduce the data size.
In [5], a tailed LZW has been proposed to address the

memory constraint of a sensor device. Summarization of the
original data by regression or linear modeling has been
proposed for trajectory data compression [3], [6]. However,
the above works do not address application-level semantics
in data, such as the correlations of a group of moving
objects, which we exploit to enhance the compressibility.

3 PRELIMINARIES

3.1 Network and Location Models

Many researchers believe that a hierarchical architecture
provides better coverage and scalability, and also extends
the network lifetime of WSNs [25], [26]. In a hierarchical
WSN, such as that proposed in [27], the energy, computing,
and storage capacity of sensor nodes are heterogeneous. A
high-end sophisticated sensor node, such as Intel Stargate
[28], is assigned as a cluster head (CH) to perform high
complexity tasks; while a resource-constrained sensor node,
such as Mica2 mote [29], performs the sensing and low
complexity tasks. In this work, we adopt a hierarchical
network structure with K layers, as shown in Fig. 1a, where
sensor nodes are clustered in each level and collaboratively
gather or relay remote information to a base station called a
sink. A sensor cluster is a mesh network of n� n sensor
nodes handled by a CH and communicate with each other
by using multihop routing [30]. We assume that each node
in a sensor cluster has a locally unique ID and denote the
sensor IDs by an alphabet �. Fig. 1b shows an example of a
two-layer tracking network, where each sensor cluster
contains 16 nodes identified by � ¼ fa, b; . . . ; pg.

In this work, an object is defined as a target, such as an
animal or a bird, that is recognizable and trackable by the
tracking network. To represent the location of an object,
geometric models and symbolic models are widely used
[31]. A geometric location denotes precise two-dimension or
three-dimension coordinates; while a symbolic location
represents an area, such as the sensing area of a sensor node
or a cluster of sensor nodes, defined by the application. Since
the accurate geometric location is not easy to obtain and
techniques like the Received Signal Strength (RSS) [32] can
simply estimate an object’s location based on the ID of the
sensor node with the strongest signal, we employ a symbolic
model and describe the location of an object by using the ID
of a nearby sensor node.

Object tracking is defined as a task of detecting a moving
object’s location and reporting the location data to the sink
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Fig. 1. (a) The hierarchical- and cluster-based network structure and the
data flow of an update-based tracking network. (b) A flat view of a two-
layer network structure with 16 clusters.



periodically at a time interval. Hence, an observation on an
object is defined by the obtained location data. We assume
that sensor nodes wake up periodically to detect objects.
When a sensor node wakes up on its duty cycle and detects
an object of interest, it transmits the location data of the
object to its CH. Here, the location data include a times
tamp, the ID of an object, and its location. We also assume
that the targeted applications are delay-tolerant. Thus,
instead of forwarding the data upward immediately, the
CH compresses the data accumulated for a batch period and
sends it to the CH of the upper layer. The process is repeated
until the sink receives the location data. Consequently, the
trajectory of a moving object is thus modeled as a series of
observations and expressed by a location sequence, i.e., a
sequence of sensor IDs visited by the object. We denote a
location sequence by S ¼ s0s1 . . . sL�1, where each item si is
a symbol in � and L is the sequence length. An example of
an object’s trajectory and the obtained location sequence is
shown in the left of Fig. 2. The tracking network tracks
moving objects for a period and generates a location
sequence data set, based on which we discover the group
relationships of the moving objects.

3.2 Variable Length Markov Model (VMM) and
Probabilistic Suffix Tree (PST)

If the movements of an object are regular, the object’s next
location can be predicted based on its preceding locations.
We model the regularity by using the Variable Length
Markov Model (VMM). Under the VMM, an object’s move-
ment is expressed by a conditional probability distribution
over �. Let s denote a pattern which is a subsequence of a
location sequence S and � denote a symbol in �. The
conditional probability P ð�jsÞ is the occurrence probability
that � will follow s in S. Since the length of s is floating, the
VMM provides flexibility to adapt to the variable length of
movement patterns. Note that when a pattern s occurs more
frequently, it carries more information about the movements
of the object and is thus more desirable for the purpose of
prediction. To find the informative patterns, we first define a
pattern as a significant movement pattern if its occurrence
probability is above a minimal threshold.

To learn the significant movement patterns, we adapt
Probabilistic Suffix Tree (PST) [33] for it has the lowest
storage requirement among many VMM implementations
[34]. PST’s low complexity, i.e., OðnÞ in both time and space
[35], also makes it more attractive especially for streaming or
resource-constrained environments [36]. The PST building

algorithm1 learns from a location sequence and generates a
PST whose height is limited by a specified parameter Lmax.
Each node of the tree represents a significant movement
pattern s whose occurrence probability is above a specified
minimal threshold Pmin. It also carries the conditional
empirical probabilities P ð�jsÞ for each � in � that we use
in location prediction. Fig. 2 shows an example of a location
sequence and the corresponding PST. nodef is one of the
children of the root node and represents a significant
movement pattern with }f} whose occurrence probability
is above 0.01. The conditional empirical probabilities are
P ð0b0j}f}Þ ¼ 0:33, P ð0e0j}f}Þ ¼ 0:67, and P ð�j}f}Þ ¼ 0 for the
other � in �.

PST is frequently used in predicting the occurrence
probability of a given sequence, which provides us
important information in similarity comparison. The occur-
rence probability of a sequence s regarding to a PST T ,
denoted by PT ðsÞ, is the prediction of the occurrence
probability of s based on T . For example, the occurrence
probability PT ð}nokjfb}Þ is computed as follows:

PT ð}nokjfb}Þ ¼ PT ð}n}Þ � PT ð0o0j}n}Þ � PT ð0k0j}no}Þ
� PT ð0j0j}nok}Þ � PT ð0f 0j}nokj}Þ
� PT ð0b0j}nokjf}Þ
¼ PT ð}n}Þ � PT ð0o0j}n}Þ � PT ð0k0j}o}Þ
� PT ð0j0j}k}Þ � PT ð0f 0j}j}Þ � PT ð0b0j}okjf}Þ
¼ 0:05� 1� 1� 1� 1� 0:3 ¼ 0:0165:

PST is also useful and efficient in predicting the next
item of a sequence. For a given sequence s and a PST T , our
predict_next algorithm as shown in Fig. 3 outputs the most
probable next item, denoted by predict nextðT; sÞ. We
demonstrate its efficiency by an example as follow: Given
s ¼ }nokjf} and T shown in Fig. 2, the predict_next
algorithm traverses the tree to the deepest node nodeokjf
along the path including noderoot, nodef , nodejf , nodekjf , and
nodeokjf . Finally, symbol 0e0, which has the highest condi-
tional empirical probability in nodeokjf , is returned, i.e.,
predict nextðT; }nokjf}Þ ¼ 0e0. The algorithm’s computa-
tional overhead is limited by the height of a PST so that it
is suitable for sensor nodes.
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Fig. 2. An example of an object’s moving trajectory, the obtained location
sequence, and the generated PST T .

1. The PST building algorithm is given in Appendix A, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.30.

Fig. 3. The predict_next algorithm.



3.3 Problem Description

We formulate the problem of this paper as exploring the
group movement patterns to compress the location
sequences of a group of moving objects for transmission
efficiency. Consider a set of moving objects O ¼
fo1; o2; . . . ; ong and their associated location sequence data
set S ¼ fS1; S2; . . . ; Sng.
Definition 1. Two objects are similar to each other if their

movement patterns are similar. Given the similarity measure
function simp

2 and a minimal threshold simmin, oi and oj are
similar if their similarity score simpðoi; ojÞ is above simmin, i.e.,
simpðoi; ojÞ � simmin. The set of objects that are similar to oi is
denoted by soðoiÞ ¼ fojj8oj 2 O; simpðoi; ojÞ � simming.

Definition 2. A set of objects is recognized as a group if they are
highly similar to one another. Let g denote a set of objects. g is a
group if every object in g is similar to at least a threshold of
objects in g, i.e., 8oi 2 g, soðoiÞ\gj j

gj j � �, where � is with default
value 1

2 .3

We formally define the moving object clustering problem
as follows: Given a set of moving objects O together with
their associated location sequence data set S and a minimal
similarity threshold simmin, the moving object clustering
problem is to partition O into nonoverlapped groups,
denoted by G ¼ fg1; g2; . . . ; gig, such that the number of
groups is minimized, i.e., Gj j is minimal. Thereafter, with
the discovered group information and the obtained group
movement patterns, the group data compression problem is
to compress the location sequences of a group of moving
objects for transmission efficiency. Specifically, we formu-
late the group data compression problem as a merge
problem and an HIR problem. The merge problem is to
combine multiple location sequences to reduce the overall
sequence length, while the HIR problem targets to minimize
the entropy of a sequence such that the amount of data is
reduced with or without loss of information.

4 MINING OF GROUP MOVEMENT PATTERNS

To tackle the moving object clustering problem, we propose
a distributed mining algorithm, which comprises the
GMPMine and CE algorithms. First, the GMPMine algo-
rithm uses a PST to generate an object’s significant move-
ment patterns and computes the similarity of two objects by
using simp to derive the local grouping results. The merits
of simp include its accuracy and efficiency: First, simp

considers the significances of each movement pattern
regarding to individual objects so that it achieves better
accuracy in similarity comparison. For a PST can be used to
predict a pattern’s occurrence probability, which is viewed
as the significance of the pattern regarding the PST, simp

thus includes movement patterns’ predicted occurrence
probabilities to provide fine-grained similarity comparison.
Second, simp can offer seamless and efficient comparison
for the applications with evolving and evolutionary
similarity relationships. This is because simp can compare

the similarity of two data streams only on the changed
mature nodes of emission trees [36], instead of all nodes.

To combine multiple local grouping results into a
consensus, the CE algorithm utilizes the Jaccard similarity
coefficient to measure the similarity between a pair of
objects, and normalized mutual information (NMI) to
derive the final ensembling result. It trades off the grouping
quality against the computation cost by adjusting a partition
parameter. In contrast to approaches that perform cluster-
ing among the entire trajectories, the distributed algorithm
discovers the group relationships in a distributed manner
on sensor nodes. As a result, we can discover group
movement patterns to compress the location data in the
areas where objects have explicit group relationships.
Besides, the distributed design provides flexibility to take
partial local grouping results into ensembling when the
group relationships of moving objects in a specified
subregion are interested. Also, it is especially suitable for
heterogeneous tracking configurations, which helps reduce
the tracking cost, e.g., instead of waking up all sensors at
the same frequency, a fine-grained tracking interval is
specified for partial terrain in the migration season to
reduce the energy consumption. Rather than deploying the
sensors in the same density, they are only highly concen-
trated in areas of interest to reduce deployment costs.

4.1 The Group Movement Pattern Mining
(GMPMine) Algorithm

To provide better discrimination accuracy, we propose a
new similarity measure simp to compare the similarity of
two objects. For each of their significant movement patterns,
the new similarity measure considers not merely two
probability distributions but also two weight factors, i.e.,
the significance of the pattern regarding to each PST. The
similarity score simp of oi and oj based on their respective
PSTs, Ti and Tj, is defined as follows:

simpðoi; ojÞ ¼ � log

P
s2eS ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

�2�ðPTiðs�Þ � PTjðs�ÞÞ2
q

2Lmaxþ
ffiffiffi
2
p ; ð1Þ

where eS denotes the union of significant patterns (node
strings) on the two trees. The similarity score simp includes
the distance associated with a pattern s, defined as

dðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

�2�
ðPTiðs�Þ � PTjðs�ÞÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2�
ðPTiðsÞ � PTið�jsÞ � PTjðsÞ � PTjð�jsÞÞ2

q
;

where dðsÞ is the euclidean distance associated with a
pattern s over Ti and Tj.

For a pattern s 2 T , PT ðsÞ is a significant value because
the occurrence probability of s is higher than the minimal
support Pmin. If oi and oj share the pattern s, we have s 2 Ti
and s 2 Tj, respectively, such that PTiðsÞ and PTjðsÞ are non-
negligible and meaningful in the similarity comparison.
Because the conditional empirical probabilities are also parts
of a pattern, we consider the conditional empirical prob-
abilities PT ð�jsÞ when calculating the distance between two
PSTs. Therefore, we sum dðsÞ for all s 2 eS as the distance
between two PSTs. Note that the distance between two PSTs
is normalized by its maximal value, i.e., 2Lmax þ

ffiffiffi
2
p

. We take
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2. simp is to be defined in Section 4.1.
3. In this work, we set the threshold to 1

2 , as suggested in [37], and leave
the similarity threshold as the major control parameter because training the
similarity threshold of two objects is easier than that of a group of objects.



the negative log of the distance between two PSTs as the
similarity score such that a larger value of the similarity
score implies a stronger similar relationship, and vice versa.
With the definition of similarity score, two objects are similar
to each other if their score is above a specified similarity
threshold.

The GMPMine algorithm includes four steps. First, we
extract the movement patterns from the location sequences
by learning a PST for each object. Second, our algorithm
constructs an undirected, unweighted similarity graph
where similar objects share an edge between each other.
We model the density of group relationship by the
connectivity of a subgraph, which is also defined as the
minimal cut of the subgraph. When the ratio of the
connectivity to the size of the subgraph is higher than a
threshold, the objects corresponding to the subgraph are
identified as a group. Since the optimization of the graph
partition problem is intractable in general, we bisect the
similarity graph in the following way. We leverage the HCS
cluster algorithm [37] to partition the graph and derive the
location group information. Finally, we select a group PST
Tg for each group in order to conserve the memory space by
using the formula expressed as Tg¼ argmaxT2T

P
s2S P

T ðsÞ,
where S denotes sequences of a group of objects and T
denotes their PSTs. Due to the page limit, we give an
illustrative example of the GMPMine algorithm in Appen-
dix B, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2010.30.

4.2 The Cluster Ensembling (CE) Algorithm

In the previous section, each CH collects location data and
generates local group results with the proposed GMPMine
algorithm. Since the objects may pass through only partial
sensor clusters and have different movement patterns in
different clusters, the local grouping results may be
inconsistent. For example, if objects in a sensor cluster walk
close together across a canyon, it is reasonable to consider
them a group. In contrast, objects scattered in grassland
may not be identified as a group. Furthermore, in the case
where a group of objects moves across the margin of a
sensor cluster, it is difficult to find their group relationships.
Therefore, we propose the CE algorithm to combine
multiple local grouping results. The algorithm solves the
inconsistency problem and improves the grouping quality.

The ensembling problem involves finding the partition of

all moving objectsO that contains the most information about

the local grouping results. We utilize NMI [38], [39] to

evaluate the grouping quality. Let C denote the ensemble

of the local grouping results, represented as C ¼ fG0;

G1; . . . ; GKg, where K denotes the ensemble size. Our goal

is to discover the ensembling resultG0 that contains the most

information about C, i.e., G0¼ argmax
G2eGPK

i¼1NMIðGi;GÞ,
where eG denotes all possible ensembling results.

However, enumerating every G 2 eG in order to find the
optimal ensembling result G0 is impractical, especially in the
resource-constrained environments. To overcome this diffi-
culty, the CE algorithm trades off the grouping quality
against the computation cost by adjusting the partition
parameter D, i.e., a set of thresholds with values in the range

½0; 1� such that a finer-grained configuration of D achieves a
better grouping quality but in a higher computation cost.
Therefore, for a set of thresholds D, we rewrite our objective
function as G�0¼ argmaxG�;�2D

PK
i¼1NMIðGi;G�Þ.

The algorithm includes three steps. First, we utilize
Jaccard Similarity Coefficient [40] as the measure of the
similarity for each pair of objects. Second, for each � 2 D,
we construct a graph where two objects share an edge if
their Jaccard Similarity Coefficient is above �. Our algo-
rithm partitions the objects to generate a partitioning result
G�. Third, we select the ensembling result G�0 . Because of
space limitations, we only demonstrate the CE mining
algorithm with an example in Appendix C, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2010.30. In the
next section, we propose our compression algorithm that
leverages the obtained group movement patterns.

5 DESIGN OF A COMPRESSION ALGORITHM WITH

GROUP MOVEMENT PATTERNS

A WSN is composed of a large number of miniature sensor
nodes that are deployed in a remote area for various
applications, such as environmental monitoring or wildlife
tracking. These sensor nodes are usually battery-powered
and recharging a large number of them is difficult. There-
fore, energy conservation is paramount among all design
issues in WSNs [41], [42]. Because the target objects are
moving, conserving energy in WSNs for tracking moving
objects is more difficult than in WSNs that monitor immobile
phenomena, such as humidity or vibrations. Hence, pre-
vious works, such as [43], [44], [45], [46], [47], [48], especially
consider movement characteristics of moving objects in their
designs to track objects efficiently. On the other hand, since
transmission of data is one of the most energy expensive
tasks in WSNs, data compression is utilized to reduce the
amount of delivered data [1], [2], [3], [4], [5], [6], [49], [50],
[51], [52]. Nevertheless, few of the above works have
addressed the application-level semantics, i.e., the tempor-
al-and-spatial correlations of a group of moving objects.

Therefore, to reduce the amount of delivered data, we
propose the 2P2D algorithm which leverages the group
movement patterns derived in Section 4 to compress the
location sequences of moving objects elaborately. As shown
in Fig. 4, the algorithm includes the sequence merge phase
and the entropy reduction phase to compress location
sequences vertically and horizontally. In the sequence
merge phase, we propose the Merge algorithm to compress
the location sequences of a group of moving objects. Since
objects with similar movement patterns are identified as a
group, their location sequences are similar. The Merge
algorithm avoids redundant sending of their locations, and
thus, reduces the overall sequence length. It combines the
sequences of a group of moving objects by 1) trimming
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Fig. 4. Design of the two-phase and 2D compression algorithm.



multiple identical symbols at the same time interval into a
single symbol or 2) choosing a qualified symbol to represent
them when a tolerance of loss of accuracy is specified by the
application. Therefore, the algorithm trims and prunes
more items when the group size is larger and the group
relationships are more distinct. Besides, in the case that only
the location center of a group of objects is of interest, our
approach can find the aggregated value in the phase,
instead of transmitting all location sequences back to the
sink for postprocessing.

In the entropy reduction phase, we propose the Replace
algorithm that utilizes the group movement patterns as the
prediction model to further compress the merged sequence.
The Replace algorithm guarantees the reduction of a
sequence’s entropy, and consequently, improves compres-
sibility without loss of information. Specifically, we define a
new problem of minimizing the entropy of a sequence as
the HIR problem. To reduce the entropy of a location
sequence, we explore Shannon’s theorem [17] to derive
three replacement rules, based on which the Replace
algorithm reduces the entropy efficiently. Also, we prove
that the Replace algorithm obtains the optimal solution of
the HIR problem as Theorem 1. In addition, since the objects
may enter and leave a sensor cluster multiple times during
a batch period and a group of objects may enter and leave a
cluster at slightly different times, we discuss the segmenta-
tion and alignment problems in Section 5.3. Table 1
summaries the notations.

5.1 Sequence Merge Phase

In the application of tracking wild animals, multiple
moving objects may have group relationships and share
similar trajectories. In this case, transmitting their location
data separately leads to redundancy. Therefore, in this
section, we concentrate on the problem of compressing
multiple similar sequences of a group of moving objects.

Consider an illustrative example in Fig. 5a, where three
location sequences S0, S1, and S2 represent the trajectories
of a group of three moving objects. Items with the same
index belong to a column, and a column containing
identical symbols is called an S-column; otherwise, the
column is called a D-column. Since sending the items in an
S-column individually causes redundancy, our basic idea
of compressing multiple sequences is to trim the items in an

S-column into a single symbol. Specifically, given a group
of n sequences, the items of an S-column are replaced by a
single symbol, whereas the items of a D-column are
wrapped up between two 0=0 symbols. Finally, our algo-
rithm generates a merged sequence containing the same
information of the original sequences. In decompressing
from the merged sequence, while symbol 0=0 is encountered,
the items after it are output until the next 0=0 symbol.
Otherwise, for each item, we repeat it n times to generate
the original sequences. Fig. 5b shows the merged sequence
S00whose length is decreased from 60 items to 48 items such
that 12 items are conserved. The example pointed out that
our approach can reduce the amount of data without loss of
information. Moreover, when there are more S-columns,
our approach can bring more benefit.

When a little loss in accuracy is tolerant, representing
items in a D-column by an qualified symbol to generate
more S-columns can improve the compressibility. We
regulate the accuracy by an error bound, defined as the
maximal hop count between the real and reported locations
of an object. For example, replacing items 2 and 6 of S2 by 0g0

and 0p0, respectively, creates two more S-columns, and thus,
results in a shorter merged sequence with 42 items. To
select a representative symbol for a D-column, we includes
a selection criterion to minimize the average deviation
between the real locations and reported locations for a
group of objects at each time interval as follows:

Selection criterion. The maximal distance between the reported

location and the real location is below a specified error bound

eb, i.e., when the ith column is a D-column, Sj½i� � �
�� �� � eb

must hold for 0 � j < n, where n is the number of sequences.
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Description of the Notations

Fig. 5. An example of the Merge algorithm. (a) Three sequences with
high similarity. (b) The merged sequence S00.



Therefore, to compress the location sequences for a
group of moving objects, we propose the Merge algorithm
shown in Fig. 6. The input of the algorithm contains a group
of sequences fSij0 � i < ng and an error bound eb, while
the output is a merged sequence that represents the group
of sequences. Specifically, the Merge algorithm processes
the sequences in a columnwise way. For each column, the
algorithm first checks whether it is an S-column. For an S-
column, it retains the value of the items as Lines 4-5.
Otherwise, while an error bound eb > 0 is specified, a
representative symbol is selected according to the selection
criterion as Line 7. If a qualified symbol exists to represent
the column, the algorithm outputs it as Lines 15-18.
Otherwise, the items in the column are retained and
wrapped by a pair of “/” as Lines 9-13. The process repeats
until all columns are examined. Afterward, the merged
sequence S00 is generated.

Following the example shown in Fig. 5a, with a specified
error bound eb as 1, the Merge algorithm generates the
solution, as shown in Fig. 7; the merged sequence contains
only 20 items, i.e., 40 items are curtailed.

5.2 Entropy Reduction Phase

In the entropy reduction phase, we propose the Replace
algorithm to minimize the entropy of the merged sequence
obtained in the sequence merge phase. Since data with
lower entropy require fewer bits for storage and transmis-
sion [17], we replace some items to reduce the entropy
without loss of information. The object movement patterns
discovered by our distributed mining algorithm enable us
to find the replaceable items and facilitate the selection of
items in our compression algorithm. In this section, we first
introduce and define the HIR problem, and then, explore
the properties of Shannon’s entropy to solve the HIR
problem. We extend the concentration property for entropy
reduction and discuss the benefits of replacing multiple
symbols simultaneously. We derive three replacement rules
for the HIR problem and prove that the entropy of the
obtained solution is minimized.

5.2.1 Three Derived Replacement Rules

Let P ¼ fp0, p1; . . . ; pj�j�1g denote the probability distribu-
tion of the alphabet � corresponding to a location sequence
S, where pi is the occurrence probability of �i in �, defined

as pi ¼ jfsjjsj¼�i;0�j<LgjL , and L ¼ Sj j. According to Shannon’s
source coding theorem, the optimal code length for symbol
�i is log

2
pi, which is also called the information content of �i.

Information entropy (or Shannon’s entropy) is thereby
defined as the overall sum of the information content over �,

eðSÞ ¼ eðp0; p1; . . . ; pj�j�1Þ ¼
X

0�i<j�j
�pi � log

2
pi: ð2Þ

Shannon’s entropy represents the optimal average code
length in data compression, where the length of a symbol’s
codeword is proportional to its information content [17].

A property of Shannon’s entropy is that the entropy is
the maximum, while all probabilities are of the same value.
Thus, in the case without considering the regularity in the
movements of objects, the occurrence probabilities of
symbols are assumed to be uniform such that the entropy
of a location sequence as well as the compression ratio is
fixed and dependent on the size of a sensor cluster, e.g., for
a location sequence with length D collected in a sensor
cluster of 16 nodes, the entropy of the sequence is eð 1

16 ,
1
16 ; . . . ; 1

16Þ ¼ 4. Consequently, 4D bits are needed to repre-
sent the location sequence. Nevertheless, since the move-
ments of a moving object are of some regularity, the
occurrence probabilities of symbols are probably skewed
and the entropy is lower. For example, if two probabilities
become 1

32 and 3
32 , the entropy is reduced to 3.97. Thus,

instead of encoding the sequence using 4 bits per symbol,
only 3:97D bits are required for the same information. This
example points out that when a moving object exhibits
some degree of regularity in their movements, the skewness
of these probabilities lowers the entropy. Seeing that data
with lower entropy require fewer bits to represent the same
information, reducing the entropy thereby benefits for data
compression and, by extension, storage and transmission.

Motivated by the above observation, we design the
Replace algorithm to reduce the entropy of a location
sequence. Our algorithm imposes the hit symbols on the
location sequence to increase the skewness. Specifically, the
algorithm uses the group movement patterns built in both
the transmitter (CH) and the receiver (sink) as the
prediction model to decide whether an item of a sequence
is predictable. A CH replaces the predictable items each
with a hit symbol to reduce the location sequence’s entropy
when compressing it. After receiving the compressed
sequence, the sink node decompresses it and substitutes
every hit symbol with the original symbol by the identical
prediction model, and no information loss occurs.

Here, an item si of a sequence S is predictable item if
predict nextðT; S½0::i� 1�Þ is the same value as si. A symbol
is a predictable symbol once an item of the symbol is
predictable. For ease of explanation, we use a taglst4 to
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Fig. 6. The Merge algorithm.

Fig. 7. An example of the Merge algorithm: the merged sequence with
eb ¼ 1.

4. A taglst associated with a sequence S is a sequence of 0s and 1s
obtained as follows: For those predictable items in S, the corresponding
items in taglst are set as 1. Otherwise, their values in taglst are 0.



express whether each item of S is predictable in the
following sections. Consider the illustrative example shown
in Fig. 8, the probability distribution of � corresponding to
S is P ¼ f0:04; 0:16; 0:04; 0; 0; 0:08; 0:04; 0; 0:04; 0:12; 0:24; 0;
0; 0:12; 0:12; 0g, and items 1, 2, 7, 9, 11, 12, 15, and 22 are
predictable items. To reduce the entropy of the sequence, a
simple approach is to replace each of the predictable items
with the hit symbol and obtain an intermediate sequence
S0 ¼00n::kfbb:n:o::ij:bbnkkk:gc00. Compared with the original
sequence S with entropy 3.053, the entropy of S0 is reduced
to 2.854. Encoding S and S0 by the Huffman coding
technique, the lengths of the output bit streams are 77 and
73 bits, respectively, i.e., 5 bits are conserved by the simple
approach.

However, the above simple approach does not always
minimize the entropy. Consider the example shown in Fig. 9a,
an intermediate sequence with items 1 and 19 unreplaced has
lower entropy than that generated by the simple approach.
For the example shown in Fig. 9b, the simple approach even
increases the entropy from 2.883 to 2.963.

We define the above problem as the HIR problem and
formulate it as follows:

Definition 3 (HIR problem). Given a sequence S ¼ fsijsi 2
�; 0 � i < Lg and a taglst, an intermediate sequence is a
generation of S, denoted by S0 ¼ fs0ij0 � i < Lg, where s0i is
equal to si if taglst½i� ¼ 0. Otherwise, s0i is equal to si or 0:0.
The HIR problem is to find the intermediate sequence S0 such
that the entropy of S0 is minimal for all possible intermediate
sequences.

A brute-force method to the HIR problem is to enumer-
ate all possible intermediate sequences to find the optimal
solution. However, this brute-force approach is not scalable,
especially when the number of the predictable items is
large. Therefore, to solve the HIR problem, we explore
properties of Shannon’s entropy to derive three replace-
ment rules that our Replace algorithm leverages to obtain
the optimal solution. Here, we list five most relevant
properties to explain the replacement rules. The first four
properties can be obtained from [17], [53], [54], while the

fifth, called the strong concentration property, is derived
and proved in the paper.5

Property 1 (Expansibility). Adding a probability with a value
of zero does not change the entropy, i.e., eðp0, p1; . . . ; pj�j�1,
pj�jÞ is identical to eðp0, p1; . . . ; pj�j�1Þ when pj�j is zero.

According to Property 1, we add a new symbol 0:0 to �
without affecting the entropy and denote its probability as
p16 such that P is fp0, p1; . . . ; p15, p16 ¼ 0g.
Property 2 (Symmetry). Any permutation of the probability

values does not change to the entropy. For example,
eð0:1; 0:4; 0:5Þ is identical to eð0:4; 0:5; 0:1Þ.

Property 3 (Accumulation). Moving all the value from one
probability to another such that the former can be thought
of as being eliminated decreases the entropy, i.e.,
eðp0; p1; . . . ; 0; . . . ; pi þ pj; . . . ; pj�j�1Þ is equal or less than
eðp0,p1; . . . ; pi; . . . ; pj; . . . ; pj�j�1Þ.

With Properties 2 and 3, if all the items of symbol � are
predictable, i.e., nð�Þ ¼ nhitð�Þ, replacing all the items of �
by 0:0 will not affect the entropy. If there are multiple
symbols having nð�Þ ¼ nhitð�Þ, replacing all the items of
these symbols can reduce the entropy. Thus, we derive the
first replacement rule—the accumulation rule: Replace all

items of symbol � in ŝ, where nð�Þ ¼ nhitð�Þ.
Property 4 (Concentration). For two probabilities, moving a

value from the lower probability to the higher probability
decreases the entropy, i.e., if pi � pj, for 0 < �p � pi,
eðp0,p1; . . . ; pi ��p; . . . ; pj þ�p; . . . ; pj�j�1Þ is less than
eðp0,p1; . . . ; pi; . . . ; pj; . . . ; pj�j�1Þ.

Property 5 (Strong concentration). For two probabilities,
moving a value that is larger than the difference of the two
probabilities from the higher probability to the lower one
decreases the entropy, i.e., if pi > pj, for pi � pj < �p � pi,
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Fig. 8. An example of the simple method. The first row represents the index, and the second row is the location sequence. The third row is the taglst
which represents the prediction results. The last row is the result of the simple approach. Note that items 1, 2, 7, 9, 11, 12, 15, and 22 are predictable
items such that the set of predictable symbols is ŝ ¼ fk, a, j, f, og. In the example, items 2, 9, and 10 are items of 0o0 such that the number of items of
symbol 0o0 is nð0o0Þ ¼ 3, whereas items 2 and 9 are the predictable items of 0o0, and the number of predictable items of symbol 0o0 is nhitð0o0Þ ¼ 2.

Fig. 9. Problems of the simple approach.

5. Due to the page limit, the proofs of the strong concentration rule and
Lemmas 1-4 are given in Appendices C and D, respectively, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.30.



eðp0,p1; . . . ; pi ��p; . . . ; pj þ�p; . . . ; pj�j�1Þ is less than
eðp0,p1; . . . ; pi; . . . ; pj; . . . ; pj�j�1Þ.

According to Properties 4 and 5, we conclude that if the
difference of two probabilities increases, the entropy
decreases. When the conditions conform to Properties 4
and 5, we further prove that the entropy is monotonically
reduced as �p increases such that replacing all predictable
items of a qualified symbol reduces the entropy mostly as
Lemmas 1 and 2.

Definition 4 (Concentration function). For a probability
distribution P ¼ fp0, p1; . . . ; pj�j�1g, we define the concentra-
tion function of k probabilities pi1 , pi2 ; . . . ; pik , and pj as

fi1i2...ikjðx1; x2; . . . ; xkÞ ¼ e
�
p0; . . . ; pi1 � x1; . . . ; pi2

� x2; . . . ; pik � xk; . . . ; pj

þ
Xk
i¼1

xi; . . . ; pj
P
j�1

�
:

Lemma 1. If pi � pj, for any x such that 0 � x � pi, the
concentration function of pi and pj is monotonic decreasing.

Lemma 2. If pi > pj, for any x such that pi � pj � x � pi, the
concentration function fijðxÞ of pi and pj is monotonic
decreasing.

Accordingly, we derive the second replacement rule—the
concentration rule: Replace all predictable items of symbol
� in ŝ, where nð�Þ � nð0:0Þ or nhitð�Þ > nð�Þ � nð0:0Þ.

As an extension of the above properties, we also explore
the entropy variation, while predictable items of multiple
symbols are replaced simultaneously. Let ŝ0 denote a subset
of ŝ, where jŝ0j � 2. We prove that if replacing predictable
symbols in ŝ0 can minimize the entropy corresponding to
symbols in ŝ0, the number of hit symbols after the
replacement must be larger than the number of the
predictable symbols after the replacement as Lemma 3. To
investigate whether the converse statement exists, we
conduct an experiment in a brute-force way. However, the
experimental results show that even under the condition
that nð0:0Þ þ

P
8�02ŝ0nhitð�0Þ � nð�Þ � nhitð�Þ for every � in ŝ0,

replacing predictable items of the symbols in ŝ0 does not
guarantee the reduction of the entropy. Therefore, we
compare the difference of the entropy before and after
replacing symbols in ŝ0 as

gainðŜ0Þ ¼ �
X
8�2ŝ0

p� � log2

p�
p� ��p�

��p�

� log2ðp� ��p�Þ

� p0:0 � log2

p0:0

p0:0 þ
P
8�2ŝ0 �p��

� �
þ
X
8�2ŝ0

�p� � log2 p0:0 þ
X
8�2ŝ0

�p��

 !
:

In addition, we also prove that once replacing partial
predictable items of symbols in ŝ0 reduces entropy, repla-
cing all predictable items of these symbols reduces the
entropy mostly since the entropy decreases monotonically

as Lemma 4. We thereby derive the third replacement
rule—the multiple symbol rule: Replace all of the
predictable items of every symbol in ŝ0 if gainðŝ0Þ > 0.

Lemma 3. If exist 0 � an � pin , n ¼ 1; . . . ; k, such that

f
i1 i2

...ik j
ða1; a2; . . . ; akÞ is minimal, we have pj þ

Pk
i¼1ai �

pin � an, n ¼ 1; . . . ; k.

Lemma 4. If exist xmin1
, xmin2

; . . . , and xmink such that pj þPk
i¼1xmini > pin � xminn for n ¼ 1; 2; . . . ; k,f

i1i2
...ik j
ðx1; x2;

. . . ; xkÞ is monotonically decreasing for xminn � xn � pin ,

n ¼ 1; . . . ; k.

5.2.2 The Replace Algorithm

Based on the observations described in the previous section,
we propose the Replace algorithm that leverages the three
replacement rules to obtain the optimal solution for the HIR
problem. Our algorithm examines the predictable symbols
on their statistics, which include the number of items and
the number of predictable items of each predictable symbol.
The algorithm first replaces the qualified symbols according
to the accumulation rule. Afterward, since the concentration
rule and the multiple symbol rule are related to nð0:0Þ, which
is increased after every replacement, the algorithm itera-
tively replaces the qualified symbols according to the two
rules until all qualified symbols are replaced. The algorithm
thereby replaces qualified symbols and reduces the entropy
toward the optimum gradually. Compared with the brute-
force method that enumerates all possible intermediate
sequences for the optimum in exponential complexity, the
Replace algorithm that leverages the derived rules to obtain
the optimal solution in OðLÞ time6 is more scalable and
efficient. We prove that the Replace algorithm guarantees to
reduce the entropy monotonically and obtains the optimal
solution of the HIR problem as Theorem 1. Next, we detail
the replace algorithm and demonstrate the algorithm by an
illustrative example.

Theorem 1.7 The Replace algorithm obtains the optimal solution
of the HIR problem.

Fig. 10 shows the Replace algorithm. The input includes
a location sequence S and a predictor Tg, while the output,
denoted by S0, is a sequence in which qualified items are
replaced by 0:0. Initially, Lines 3-9 of the algorithm find the
set of predictable symbols together their statistics. Then, it
exams the statistics of the predictable symbols according to
the three replacement rules as follows: First, according to
the accumulation rule, it replaces qualified symbols in one
scan of the predictable symbols as Lines 10-14. Next, the
algorithm iteratively exams for the concentration and the
multiple symbol rules by two loops. The first loop from
Line 16 to Line 22 is for the concentration, whereas the
second loop from Line 25 to Line 36 is for the multiple
symbol rule. In our design, since finding a combination of
predictable symbols to make gainðŝ0Þ > 0 hold is more
costly, the algorithm is prone to replace symbols with the

104 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011

6. The complexity analysis is given in Appendix E, which can be found
on the Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2010.30.

7. The proof of Theorem 1 is given in Appendix F, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2010.30.



concentration rule. Specifically, after a scan of predictable
symbols for the second rule as Lines 17-23, the algorithm
search for a combination of symbols in ŝ to make the

condition of the multiple symbol rule hold as Lines 26-36; it
starts with a combination of two symbols, i.e., m ¼ 2. Once
a combination ŝ0 makes gainðŝ0Þ > 0 hold, the enumeration
procedure stops as Line 31 and the algorithm goes back to
the first loop. Otherwise, after an exhaustive search for any

combination of m symbols, it goes on examining the

combinations of mþ 1 symbols. The process repeats until
ŝ0 contains all of the symbols in ŝ.

In the following, we explain our Replace algorithm
with an illustrative example. Given a sequence S ¼
00nokkfbbanookjijfbbnkkkjgc00 with entropy 3.053, as shown
in Fig. 11, our algorithm generates the statistic table and
taglst shown in Fig. 11a. In this example, ŝ ¼ fk, j, o, a, fg,
and the numbers of items of the symbols are 6, 3, 3, 1, and 2,
whereas the numbers of predictable items of the symbols
are 2, 2, 2, 1, and 1, respectively. First, according to the
accumulation rule, the predictable items of 0a0 are replaced
due to nð0a0Þ being equal to nhitð0a0Þ (Lines 10-14). After that,
the statistic table is updated, as shown in Fig. 11b. Second,
according to the multiple symbol rule, we replace the
predictable items of 0j0 and 0o0 simultaneously such that the
entropy of S0 is reduced to 2.969. Next, because nð0f 0Þ is less
than nð0:0Þ, the predictable items of 0f 0 are replaced
according to the concentration rule (Lines 17-23), then the
entropy of S0 is reduced to 2.893. Finally, since nð0k0Þ is
equal to nð0:0Þ and nhitð0k0Þ is greater than nð0k0Þ minus ð0:0Þ,
the predictable items of symbol 0k0 are replaced according to
the concentration rule. Finally, no other candidate is
available, and our algorithm outputs S0 with entropy
2.854. In this example, all predictable items are replaced
to minimize the entropy.

In addition, for the example shown in Fig. 5, the Replace
algorithm reduces S0, S1, and S2’s entropies from 3.171,
2.933, and 2.871 to 2.458, 2.828, and 2.664, respectively, and
encoding S00, S01, and S02 reduces the sum of output
bitstreams from 181 to 161 bits. On the other hand, when
the specified error bound eb is 0 and 1, by fully utilizing the
group movement patterns, the 2P2D algorithm reduces the
total data size to 153 and 47 bits, respectively; hence, 15.5
and 74 percent of the data volume are saved, respectively.

5.3 Segmentation, Alignment, and Packaging

In an online update approach, sensor nodes are assigned a
tracking task to update the sink with the location of moving
objects at every tracking interval. In contrast to the online
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Fig. 10. The Replace algorithm.

Fig. 11. An example of the Replace algorithm.



approach, the CHs in our batch-based approach accumulate
a large volume of location data for a batch period before
compressing and transmitting it to the sink; and the location
update process repeats from batch to batch. In real-world
tracking scenarios, slight irregularities of the movements of
a group of moving objects may exist in the microcosmic
view. Specifically, a group of objects may enter a sensor
cluster at slightly different times and stay in a sensor cluster
for slightly different periods, which lead to the alignment
problem among the location sequences. Moreover, since the
trajectories of moving objects may span multiple sensor
clusters, and the objects may enter and leave a cluster
multiple times during a batch period, a location sequence
may comprise multiple segments, each of which is a
trajectory that is continuous in time domain. To deal with
the alignment and segmentation problems, we partition
location sequences into segments, and then, compress and
package them into one update packet.

Consider a group of three sequences shown in Fig. 12a, the
segmentsE1,E2, andE3 are aligned and named G-segments,
whereas segments A, B, C, and D are named S-segments.
Figs. 12b, 12c, and 12d show an illustrative example to
construct the frame for the three sequences. First, the Merge
algorithm combines E1, E2, and E3 to generate an inter-
mediate sequence S

00
E . Next, S

00
E together with A, B, C, and D

is viewed as a sequence and processed by the Replace
algorithm to generate an intermediate sequence S0, which
comprises S0A, S0B, S0C , S0D, and S0E . Finally, intermediate
sequence S0 is compressed and packed.

For a batch period of D tracking intervals, the location
data of a group of n objects are aggregated in one packet
such that ðn�D� 1Þ packet headers are eliminated. The
payload may comprise multiple G-segments or S-segments,
each of which includes a beginning time stamp (a bits), a
sequence of consequent locations (b bits for each), an object
or group ID ( c bits), and a field representing the length of a
segment (l bits). Therefore, the payload size is calculated
as

P
iðaþDi � bþ cþ lÞ, where Di is the length of

ith segment. By exploiting the correlations in the location
data, we can further compress the location data and reduce
the amount of data to H þ

P
iðaþ cþ lÞ þ n�D� b� 1

r ,

where r denotes the compression ratio of our compression
algorithm and H denotes the data size of the packet header.

As for the online update approach, when a sensor
node detects an object of interest, it sends an update
packet upward to the sink. The payload of a packet
includes time stamp, location, and object ID such that the
packet size is H þ aþ bþ c. Some approaches, such as
[55], employ techniques like location prediction to reduce
the number of transmitted update packets. For D tracking
intervals, the amount of data for tracking n objects is
D� ðH þ aþ bþ cÞ � ð1� pÞ � n, where p is the predic-
tion hit rate.

Therefore, the group size, the number of segments, and
the compress ratio are important factors that influence the
performance of the batch-based approach. In the next
section, we conduct experiments to evaluate the perfor-
mance of our design.

6 EXPERIMENT AND ANALYSIS

We implement an event-driven simulator in C++ with SIM
[56] to evaluate the performance of our design. To the best of
our knowledge, no research work has been dedicated to
discovering application-level semantic for location data
compression. We compare our batch-based approach with
an online approach for the overall system performance
evaluation and study the impact of the group size (n), as
well as the group dispersion radius (GDR ), the batch period
(D), and the error bound of accuracy (eb). We also compare
our Replace algorithm with Huffman encoding technique to
show its effectiveness. Since there is no related work that
finds real location data of group moving objects, we
generate the location data, i.e., the coordinates (x; y), with
the Reference Point Group Mobility Model [57] for a group
of objects moving in a two-layer tracking network with
256 nodes. A location-dependent mobility model [58] is used
to simulate the roaming behavior of a group leader; the other
member objects are followers that are uniformly distributed
within a specified group dispersion radius (GDR) of the
leader, where the GDR is the maximal hop count between
followers and the leader. We utilize the GDR to control the
dispersion degree of the objects. Smaller GDR implies
stronger group relationships, i.e., objects are closer together.
The speed of each object is 1 node per time unit, and the
tracking interval is 0.5 time unit. In addition, the starting
point and the furthest point reached by the leader object are
randomly selected, and the movement range of a group of
objects is the euclidean distance between the two points.
Note that we take the group leader as a virtual object to
control the roaming behavior of a group of moving objects
and exclude it in calculating the data traffic.

In the following experiments, the default values of n, D,

d, and eb are 5, 1,000, 6, and 0. The data sizes of object (or

group) ID, location ID, time stamp, and packet header are 1,

1, 1, and 4 bytes, respectively. We set the PST parameters

ðLmax; Pmin; �; �min; rÞ ¼ ð5; 0:01; 0; 0:0001; 1:2Þ empirically in

learning the movement patterns. Moreover, we use the

amount of data in kilobyte (KB) and compression ratio (r) as

the evaluation metric, where the compression ratio is
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Fig. 12. An example of constructing an update packet. (a) Three
sequences aligned in time domain. (G-segments: E1, E2, and E3, S-
segments: A, B , C, and D.) (b) Combining G-segments by the Merge
algorithm. (c) Replacing the predictable items by the Replace algorithm.
(d) Compressing and packing to generate the payload of the update
packet.



defined as the ratio between the uncompressed data size

and the compressed data size, i.e., r ¼ uncompressed data size
compressed data size .

First, we compare the amount of data of our batch-based
approach (batch) with that of an online update approach
(online). In addition, some approaches, such as [55], employ
techniques like location prediction to reduce the number of
transmitted update packets. We use the discovered move-
ment patterns as the prediction model for prediction in the
online update approach (onlineþp). Fig. 13a shows that our
batch-based approach outperforms the online approach with
and without prediction. The amount of data of our batch-
based approach is relatively low and stable as the GDR
increases. Compared with the online approach, the compres-
sion ratios of our batch approach and the online approach
with prediction are about 15.0 and 2.5 as GDR ¼ 1.

Next, our compression algorithm utilizes the group
relationships to reduce the data size. Fig. 13b shows the
impact of the group size. The amount of data per object
decreases as the group size increases. Compared with
carrying the location data for a single object by an
individual packet, our batch-based approach aggregates
and compresses packets of multiple objects such that the
amount of data decreases as the group size increases.
Moreover, our algorithm achieves high compression ratio in
two ways. First, while more sequences that are similar or
sequences that are more similar are compressed simulta-
neously, the Merge algorithm achieves higher compression
ratio. Second, with the regularity in the movements of a
group of objects, the Replace algorithm minimizes the
entropy which also leads to higher compression ratio. Note
that we use the GDR to control the group dispersion range
of the input workload. The leader object’s movement path
together with the GDR sets up a spacious area where the
member objects are randomly distributed. Therefore, a
larger GDR implies that the location sequences have higher
entropy, which degrades both the prediction hit rate and
the compression ratio. Therefore, larger group size and
smaller GDR result in higher compression ratio.

Fig. 14a shows the impact of the batch period (D). The
amount of data decreases as the batch period increases.
Since more packets are aggregated and more data are
compressed for a longer batch period, our batch-based
approach reduces both the data volume of packet headers
and the location data.

Since the accuracy of sensor networks is inherently
limited, allowing approximation of sensors’ readings or
tolerating a loss of accuracy is a compromise between data
accuracy and energy conservation. We study the impact of
accuracy on the amount of data. Fig. 14b shows that by
tolerating a loss of accuracy with eb varying from 1 to 3, the
amount of data decreases. As GDR ¼ 1, the compression
ratio r of eb ¼ 3 is about 21.2; while the compression ratio r
of eb ¼ 0 is about 15.0.

We study the effectiveness of the Replace algorithm by
comparing the compression ratios of the Huffman encoding
with and without our Replace algorithm. As GDR varies
from 0.1 to 1, Fig. 15a shows the compression ratios of the
Huffman encoding with and without our Replace algo-
rithm; while Fig. 15b shows the prediction hit rate.
Compared with Huffman, our Replace algorithm achieves
higher compression ratio, e.g., the compression ratio of our
approach is about 4, while that of Huffman is about 2.65 as
GDR ¼ 0:1. From Figs. 15a and 15b, we show that the
compression ratio that the Replace algorithm achieves
reduces as the prediction hit rate. As the prediction hit rate
is about 0.6, the compression ratio of our design is about 2.7
that is higher than 2.3 of Huffman.

7 CONCLUSIONS

In this work, we exploit the characteristics of group move-
ments to discover the information about groups of moving
objects in tracking applications. We propose a distributed
mining algorithm, which consists of a local GMPMine
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Fig. 13. Performance comparison of the batch-based and online update approaches and the impact of the group size. (a) Comparison of the batch-
based and online approaches. (b) Impact of group size.

Fig. 14. Impacts of the batch period and accuracy. (a) Impact of batch period. (b) Impact of accuracy.



algorithm and a CE algorithm, to discover group movement
patterns. With the discovered information, we devise the
2P2D algorithm, which comprises a sequence merge phase
and an entropy reduction phase. In the sequence merge
phase, we propose the Merge algorithm to merge the location
sequences of a group of moving objects with the goal of
reducing the overall sequence length. In the entropy
reduction phase, we formulate the HIR problem and propose
a Replace algorithm to tackle the HIR problem. In addition,
we devise and prove three replacement rules, with which the
Replace algorithm obtains the optimal solution of HIR
efficiently. Our experimental results show that the proposed
compression algorithm effectively reduces the amount of
delivered data and enhances compressibility and, by exten-
sion, reduces the energy consumption expense for data
transmission in WSNs.
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